
A short synthesis of (\pm) -furodisinine and (\pm) -furodisine

Aleksandr M. Moiseenkov, Antonina V. Lozanova, Anna A. Surkova and Vladimir V. Veselovsky*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328

A simple synthesis of racemic forms of natural furanoterpenoids, furodisinine and furodisine, has been carried out by electrophilic cyclisation of readily accessible α - and β -furylmethyl derivatives of linalool.

The structures of metabolites of certain types of sea sponges, furodisinin 1 and furodisin 2, has been confirmed by synthesising their racemic² and optically active forms.³

Scheme 1 Reagents and conditions: i, 0.2 equiv. 85% $\rm H_3PO_4$, aq., PhMe, 100 °C, 20 min.

We proposed a new strategy for constructing these furanodecalins by cationic cyclisation of readily accessible derivatives of linalool 3 and 4 (Scheme 1). The latter were obtained from (\pm)-dehydrolinalool 5, whose dilithium derivative 6 was subjected to CuI-catalysed condensation with chloride 7 (see ref. 4) or 8 (Scheme 2). The resulting alkynes 9 and 10, respectively, were then reduced into the corresponding dienes 3 and 4 by treatment with Li in NH₃.

The subsequent search for conditions of efficient cationic cyclisation of isoprenoids 3, 4 showed that this reaction should optimally be carried out in the presence of ~ 0.2 mol equiv. 85% $\rm H_3PO_4$ in toluene at 100 °C. The target compounds 1 and 2 were isolated in $\sim 40\%$ yields from cyclisation products

formed under these conditions by chromatography on $SiO_2/10\%$ AgNO₃. In both cases, the furanodecalins 1 and 2 were accompanied by their hitherto unknown *trans*-fused isomers, 11 and 12 ($\sim 10\%$), and by limonene derivatives, *cis-/trans*-13a,b (< 10%), respectively (Scheme 3). The latter probably resulted from deprotonation of the corresponding carbocationic intermediates 14a and 14b formed in the first step of cyclisation of the starting diolefins 3 and 4.

$$XO$$
 XO
 XO
 XO
 XO
 YO
 YO

Scheme 2 Reagents and conditions: i, CuI, THF, $-20 \rightarrow 20$ °C, > 50%; ii, Li/NH₃/THF, -70 °C, $\sim 70\%$.

The spectral characteristics of the (\pm) -furodisinine 1, (±)-furodisine 2 and limonene derivatives cis-13a,b almost coincide with those reported previously.3 The hitherto unknown compounds 4 and 10-12 were identified by the combination of data from elemental and spectral[†] analyses.

References

- 1 R. Kazlauskas, P. T. Murphy, R. J. Wells, J. J. Daly and P. Schönholzer, *Tetrahedron Lett.*, 1978, 4951. H. Hirota, M. Kitano, K.-I. Komatsubara and T. Takahashi,
- Chem. Lett., 1987, 2079.
- V. Vaillancourt, M. R. Agharahimi, U. N. Sundram, O. Richou, D. J. Faulkner and K. F. Albizati, J. Org. Chem., 1991, 56, 378.
- A. A. Surkova, A. V. Lozanova and A. M. Moiseenkov, Izv. Akad. Nauk, Ser. Khim., 1992, 471 (Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 376).

 † 4: ^{1}H NMR (200.13 MHz, CDCl3) δ 1.28 (s, 3H, 4-Me), 1.56 (m, 2H, 5-H), 1.60 and 1.68 (br. s, 6H, 8-Me), 2.2 (m, 2H, 6-H), 3.18 (br. d, 2H, 1-H, J = 6.0), 5.12 (br. t, 1H, 7-H, J = 7.1), 5.58 (dt, 1H, 3-H, J = 15.5 and 1.1), 5.76 (dt, 1H, 2-H, J = 15.5 and 5.9), 6.25 (m, 1H, 4'-H), 7.20 and 7.35 (m, 2H, 2'-H, 5'-H); m/z: 234 [M]⁺. Found (%): C, 76.70; H, 9.41. C₁₅H₂₂O₂. Calc. (%): C, 76.88; H, 9.46.

10: 1 H NMR (200.13 MHz, CDCl₃) δ 1.50 (s, 3H, 4-Me), 1.62 and 1.70 (br. s, 6H, 8-Me), 1.65 (m, 2H, 5-H), 2.2 (m, 2H, 6-H), 3.38 (br. s, 2H, 1-H), 5.15 (br. t, 1H, 7-H, J = 7.0), 6.32 (m, 1H, 4'-H), 7.33 and 7.36 (m, 2H, 2'-H, 5'-H); m/z: 232 [M]⁺. Found (%): C, 77.21;

H, 8.95. $C_{15}H_{20}O_2$. Calc. (%): C, 77.55; H, 8.68. 11: mp 33–37 °C (hexane). ¹H NMR (400.13 MHz, CDCl₃) δ 1.02 (s, 3H, 11-H), 1.23 (s, 3H, 12-H), 1.30 (m, 1H, 4a-H), 1.37 (m, 1H, 5-H), 1.71 (br. s, 3H, 13-H), 1.90 (m, 1H, 5-H), 2.06 (m, 2H, 6-H), 2.22 (dd, 1H, 1-H, J = 15.6 and 11.7), 2.42 (m, 1H, 8a-H), 2.71 (dd, 1H, 1-H, J=15.6 and 5.3), 5.30 (m, 1H, 8-H), 6.30 (br. s, 1H, 10-H), 7.25 (br. s, 1H, 9-H); 13 C NMR (50.32 MHz, CDCl₃) δ 22.9 (C-5), 23.3 (C-13), 24.4 (C-11), 27.7 (C-12), 30.6 (C-1), 31.4 (C-6), 33.3 (C-4), 34.2 (C-8a), 46.8 (C-4a), 108.2 (C-10), 125.4 (C-8), 127.5 (C-3), 134.2 (C-7), 140.4 (C-9), 148.4 (C-2); HRMS m/z 216.15231 [M]⁺, Calc. for C₁₅H₂₀O 216.15131.

12: mp 32–35 °C (hexane). 1 H NMR (400.13 MHz, CDCl₃) δ 1.10 (s, 3H, 11-H), 1.30 (s, 3H, 12-H), 1.39 (m, 2H, 8-H, 8a-H), 1.70 (br. s, 3H, 13-H), 1.86 (m, 1H, 8-H), 2.04 (m, 2H, 7-H), 2.05 (dd, 1H, 4-H, J = 15.3 and 11.6), 2.30 (m, 1H, 4a-H), 2.50 (dd, 1H, 4-H, J = 15.3, 5.0) and 5.30 (m, 1H, 5-H), 6.15 (br. s, 1H, 10-H), 7.25 (br. s, 1H, 9-H); ¹³C NMR (50.32 MHz, CDCl₃) δ 22.1 (C-11), 22.6 (C-8), 23.2 (C-13), 25.2 (C-12), 29.7 (C-4), 31.1 (C-7), 34.6 (C-4a), 35.0 (C-1), 47.3 (C-8a), 109.8 (C-10), 114.4 (C-3), 125.6 (C-5), 133.6 (C-6), 140.2 (C-9), 158.0 (C-2); HRMS m/z 216.15211 [M]⁺, Calc. for C₁₅H₂₀O 216.15131.

H

$$A_{4a}$$
 A_{4a}
 A

Scheme 3

Received: Moscow, 26th October 1995 Cambridge, 6th December 1995; Com. 5/07158E